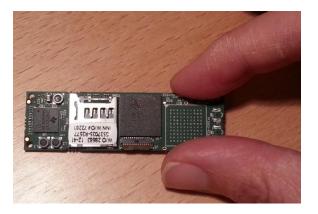

Gumstix in Space

Kathleen Morse, Ph.D. Founder and CASIS Sponsored Principal Investigator Advanced Materials Applications, LLC


Terrestrial Computing Power in Space

- Need for space based computer to support computationally demanding tasks such as:
 - Signal processing and analysis
 - Data capture
 - Sensing and detection
- Space qualified computers:
 - 2 or 3 generations behind terrestrial processing technologies
 - Expensive
 - Larger in size, weight and power consumption

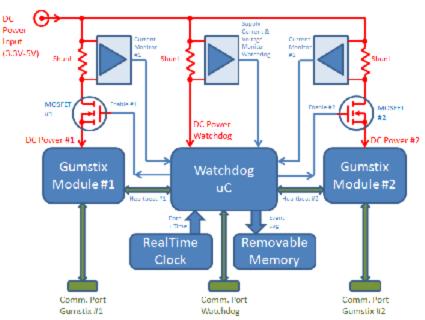
Proton 200 – 10cm X 16cm, \$120,000

Gumstix – 6cm X 2cm, \$100-\$200

Benefits of Gumstix in Space

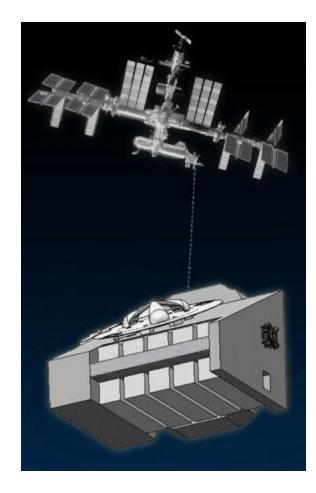
- Small form factor:
 - Gum stick sized
 - Low power consumption (0.6W)
 - Low weight (4.3g)
- Uses current generation OMAP processors with ARM Cortex-A8 architecture
- Used in mini-super computers, robotics, unmanned air vehicles
- Being studied for use in the Dependable Multiprocessor (DM) by Honeywell.

The Gumstix LEO study is an important step towards their use in a fault tolerant computers.



DM flight prototype

Space Flight Experiment


- Located on the external Nanorack of the ISS
- Watchdog protect Gumstix and record events:
 - High current Latch-up and SEF
 - SEU and SEFI
- Data received via downlink from ISS

Model	SandSTOR	М	Earth	Water	Fire	
Fight Testing						
CPU (GPP)	Yes		Yes	Yes	Yes	
RAM	Yes		Yes	Yes	Yes	
NAND Flash	n/a		Yes	Yes	Yes	
Ground Testing						
CPU (GPP)	Yes		Yes	Yes	Yes	
RAM	Yes		n/a	Yes	Yes	
NAND Flash	n/a		Yes	Yes	Yes	
GPU	n,	/a	n/a	Yes	Yes	
WIFI	n,	/a	n/a	n/a	Yes	
Bluetooth	n	/a	n/a	n/a	Yes	

Key Questions :

- How does the LEO space environment affect the Gumstix[™] modules?
- What is the net operation time for each Gumstix[™] module while in space?
- Is Gumstix[™] module performance affected by feature size?

Timeline for Gumstix Space Experiment

Event	Dates	
Program Initiated	4/16/13	
Ground Testing at Crocker Nuclear Labs	7/13 to 12/13	
Delivery to Nanoracks	1/14	
Launched to Space and ISS arrival	6/14	
Exposure to LEO	6 month period	
Return for Post-flight analysis	Early 2015	